If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-20=12
We move all terms to the left:
x^2+4x-20-(12)=0
We add all the numbers together, and all the variables
x^2+4x-32=0
a = 1; b = 4; c = -32;
Δ = b2-4ac
Δ = 42-4·1·(-32)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*1}=\frac{8}{2} =4 $
| 6h-4=16 | | -490=10(-8x+7) | | 5(-8x-15)=-555 | | 570=-10(9x-3) | | 7(6x-13)=-385 | | -536=-8(-6x+7) | | 357=-7(-7x-16) | | 5n=-13 | | 62=4x+14 | | 3m+7m=40 | | 7/1x3/49=x | | (5/6x)-(3/4)=1/4 | | 36=2(y+2)-6y | | 5/6x=4/4 | | -7w+3=+5w+4= | | 8(2w-2)=7(3w) | | 6−4m=-5m | | 5u=4u+u | | x-59=-67 | | 5e=3e+26 | | 5x+16=5x | | 4(3-2y)+8y=12 | | 6x+2(2(x+3)=3x+5x+6 | | 9w+1=9(w+1 | | 4q+5-q=2(q-3 | | 3(v-8)-7v=-36 | | 1/6x+5/8=3/4x-1/5 | | z−6.51=2.49 | | s−1=1 | | r/4=3.05 | | 100=2x+5 | | (2x-1)(x-3)=5 |